
Stylus Rust SDK
Audit

| security

September 5, 2024

Table of Contents
Table of Contents __    2

Summary ___    4

Scope __    5

System Overview __    7
Stylus SDK for Rust 7

Procedural Macros ___    8
entrypoint 8

external 8

sol_interface 8

solidity_storage 9

sol_storage 9

derive_solidity_error 9

derive_erase 9

Core Modules ___    10
abi 10

call 10

deploy 10

storage 11

hostio 11

Mini Allocator ___    12

Examples ___    12

Trust Assumptions ___    12

Critical Severity __    14
C-01 Storage Layout is Inconsistent with Solidity 14

C-02 Lack of Selector Collision Check in External Macro 15

High Severity __    16
H-01 Potential Misuse of sol_interface Macro 16

H-02 Custom Selectors Could Facilitate Proxy Selector Clashing Attack 16

Medium Severity ___    17
M-01 Function Overriding Does Not Enforce Mutability Rules 17

M-02 Multiple Interface Definitions in sol_interface Block Repeat Functions 18

M-03 Contracts Without at Least One Return Type Fail to Compile With export-abi Feature 18

Stylus Rust SDK Audit − Table of Contents − 2

M-04 Unnecessary and Problematic Storage Types in Stylus 19

M-05 Inefficient Storage of Strings and Bytes 19

M-06 Verification Challenges in Contracts May Facilitate Scams 20

M-07 Insufficient Test Coverage 20

M-08 Missing receive and fallback Functions 21

M-09 Solidity Interfaces in Stylus Might Mislead Users into Thinking They Match Solidity’s Features 21

M-10 Potential Misuse of Purity Attributes 22

Low Severity __    22
L-01 Unclear Documentation Concerning Call 22

L-02 Unclear Usage and Documentation For Storage Context During Calls 23

L-03 Misleading Documentation 24

L-04 Information Leakage in WASM Build 24

L-05 Inefficient Allocator Fallback in Stylus Contracts 24

L-06 Macro Implementations Missing Proper Docstrings 25

L-07 Misleading Methods in RawDeploy 25

L-08 Potential Misuse of #[borrow] Attribute in Storage Fields 26

L-09 Deprecate constant State Mutability in sol_interface Macro 26

L-10 sol_interface Improper Handling of Function Visibility 27

L-11 sol_interface Lacks Support for Struct and Enum Types 27

L-12 sol_storage! Macro Does Not Support Private State Variables 27

Notes & Additional Information __    28
N-01 Naming Issues 28

N-02 wee_alloc Crate is Unmaintained and Vulnerable 29

N-03 Unstable License URL Reference 29

N-04 Limited Functionality in sol_storage Macro 29

N-05 Lack of Length Accessor for Fixed-Size Arrays 30

N-06 Unresolved Link to EagerStorage 30

N-07 Typographical Errors 31

N-08 External Macro Attribute Handling Inconsistency 31

N-09 Outdated Copyright Year 31

N-10 Todo Comments in the Code 32

Conclusion __    33

Stylus Rust SDK Audit − Table of Contents − 3

Type Smart Contract Language

Timeline From 2024-07-08
To 2024-08-09

Languages Rust

Total Issues 36 (27 resolved, 1 partially resolved)

Critical Severity
Issues

2 (1 resolved, 1 partially resolved)

High Severity
Issues

2 (2 resolved)

Medium Severity
Issues

10 (7 resolved)

Low Severity Issues 12 (8 resolved)

Notes & Additional
Information

10 (9 resolved)

Summary

Stylus Rust SDK Audit − Summary − 4

Scope
We audited the OffchainLabs/stylus-sdk-rs repository at commit 62bd831.

In scope were the following files:

stylus-proc
└── src
 ├── calls
 │ └── mod.rs
 ├── lib.rs
 ├── methods
 │ ├── entrypoint.rs
 │ ├── error.rs
 │ ├── external.rs
 │ └── mod.rs
 ├── storage
 │ ├── mod.rs
 │ └── proc.rs
 └── types.rs
stylus-sdk
└── src
 ├── abi
 │ ├── bytes.rs
 │ ├── const_string.rs
 │ ├── export
 │ │ ├── internal.rs
 │ │ └── mod.rs
 │ ├── impls.rs
 │ ├── internal.rs
 │ └── mod.rs
 ├── block.rs
 ├── call
 │ ├── context.rs
 │ ├── error.rs
 │ ├── mod.rs
 │ ├── raw.rs
 │ ├── traits.rs
 │ └── transfer.rs
 ├── contract.rs
 ├── crypto.rs
 ├── debug.rs
 ├── deploy
 │ ├── mod.rs
 │ └── raw.rs
 ├── evm.rs
 ├── hostio.rs
 ├── lib.rs
 ├── msg.rs

Stylus Rust SDK Audit − Scope − 5

https://github.com/OffchainLabs/stylus-sdk-rs
https://github.com/OffchainLabs/stylus-sdk-rs/tree/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06

 ├── prelude.rs
 ├── storage
 │ ├── array.rs
 │ ├── bytes.rs
 │ ├── map.rs
 │ ├── mod.rs
 │ ├── traits.rs
 │ └── vec.rs
 ├── tx.rs
 ├── types.rs
 └── util.rs
examples
├── erc20
│ └── src
│ ├── erc20.rs
│ ├── lib.rs
│ └── main.rs
├── erc721
│ └── src
│ ├── erc721.rs
│ ├── lib.rs
│ └── main.rs
└── single_call
 └── src
 ├── lib.rs
 └── main.rs
mini-alloc
├── src
│ ├── imp.rs
│ └── lib.rs
└── tests
 └── misc.rs

Stylus Rust SDK Audit − Scope − 6

System Overview
Arbitrum Stylus introduces a paradigm shift in smart contract development by enabling

programs to be compiled to WebAssembly (WASM) and deployed on-chain, seamlessly

coexisting with traditional smart contracts written in common EVM languages like Solidity. This

language-agnostic approach opens up new possibilities for developers, enabling them to use

their preferred programming languages while maintaining full ABI compatibility with the

Ethereum ecosystem.

One of the most remarkable aspects of Stylus programs is their exceptional performance and

cost-effectiveness. These programs are orders of magnitude cheaper and faster to execute

than traditional EVM-based smart contracts while also being fully EVM compatible. This

breakthrough enables Stylus programs to interact seamlessly with existing Ethereum smart

contracts, creating a bridge between the efficiency of WASM and the established Ethereum

ecosystem.

Stylus SDK for Rust
This powerful toolkit enables developers to write programs for Arbitrum chains in Rust. Rust's

combination of performance, safety, and modern features makes it ideal for developing robust

and efficient smart contracts. The Stylus SDK for Rust provides a comprehensive set of tools

and abstractions that simplify the process of creating Stylus programs. It offers a familiar

development experience for Rust programmers while integrating seamlessly with the Arbitrum

ecosystem. Some of the features available in the SDK include:

Generic, storage-backed Rust types for programming Solidity-equivalent smart contracts

with optimal storage caching.

Simple macros for writing language-agnostic methods and entry points.

Automatic export of Solidity interfaces for interoperability across programming

languages.

Powerful primitive types backed by the feature-rich Alloy.

•

•

•

•

Stylus Rust SDK Audit − System Overview − 7

Procedural Macros
The Stylus Rust SDK leverages several powerful procedural macros to streamline smart

contract development and ensure seamless integration with the EVM ecosystem. These

macros automate complex tasks such as trait implementation, method exposure, storage

management, and inter-contract communication, allowing developers to write idiomatic Rust

code while maintaining full compatibility with contracts made with EVM-compatible languages.

entrypoint
This macro defines the entry point for Stylus execution. It implements the TopLevelStorage

trait and is typically used to annotate the top-level storage struct. This macro sets up the

necessary boilerplate for handling incoming calls, parsing calldata, and serializing results. It

also manages reentrancy protection, integrating with the Stylus VM's execution model.

external
This macro is used to make methods "external" so that they can be called by other contracts.

It implements the Router trait for the annotated impl block. The macro handles the

complexities of ABI encoding and decoding, method selector generation, and integration with

the Stylus VM's calling conventions. It also manages purity annotations (pure , view ,

payable) and can infer these based on the method signature if not explicitly specified. This

macro can have the #[inherit] attribute to implement inheritance-like behavior, allowing a

contract to include methods from parent contracts.

sol_interface
It transforms Solidity interface definitions into Rust structs and methods, enabling seamless

interaction with other contracts. The macro handles method generation, type conversion,

function selector calculation, and call context management. It supports various call types

(pure , view , and payable) and accommodates reentrancy concerns. By automating the

creation of ABI-compatible Rust code, it simplifies cross-contract communication while

maintaining type safety and idiomatic Rust practices. This macro acts as a translator, enabling

Rust contracts to integrate with the broader EVM ecosystem.

Stylus Rust SDK Audit − Procedural Macros − 8

solidity_storage
This attribute macro is applied to Rust structs to enable their use in persistent storage within a

smart contract. Each field in the struct must implement the StorageType trait which ensures

EVM storage model compatibility. Applying this macro allows developers to define storage

layouts directly in Rust, with the fields mapping to the corresponding storage slots in the EVM.

This macro ensures that the storage layout of the Rust structs aligns with that of Solidity,

facilitating seamless upgrades and interactions with existing Solidity contracts. It supports

nested structs and various storage types like StorageAddress , StorageBool , and

custom types implementing StorageType .

sol_storage
This macro enables the definition of Rust structs using Solidity-like syntax. It ensures that the

storage layout of these structs is identical to their Solidity counterparts. This macro simplifies

the transition from Solidity to Rust by allowing developers to reuse their Solidity type

definitions directly in Rust, maintaining compatibility with existing storage layouts. This macro

uses solidity_storage macro under the hood.

derive_solidity_error
This macro allows Rust enums to be used for error handling in contract methods. It enables

enums to be automatically converted into Solidity-compatible error messages that can be

returned by smart contract functions. Under the hood, the macro works by implementing

From<YOUR_ERROR> for Vec<u8> along with printing code for export-abi .

derive_erase
This macro automatically implements the Erase trait for a struct. It generates an erase()

method that calls erase() on each of the struct's fields. This allows for easy clearing of

complex storage structures in Arbitrum Stylus smart contracts, ensuring that all fields are

properly erased without manual implementation. The macro cannot implement Erase for types

that do not support it, such as mappings.

Stylus Rust SDK Audit − Procedural Macros − 9

Core Modules
The following modules are contained within the stylus-sdk folder to facilitate smart

contract development and interaction with the Stylus WASM module:

abi
The abi module provides functionality for encoding and decoding data according to the

Ethereum Application Binary Interface (ABI) specification. It enables a two-way mapping

between Solidity and Rust types, allowing for interoperability between Rust and Solidity

contracts. The module supports encoding function calls into byte arrays and decoding contract

responses back into Rust types. The abi module also includes utilities to generate method

selectors and export Solidity interfaces, treating Vec<u8> as uint8[] in Solidity and using

the Bytes type for Solidity bytes . This functionality is essential for communication between

Rust-based smart contracts and those written in Solidity.

call
The call module manages interactions with external contracts by handling the execution

context and providing mechanisms for standard and raw contract calls. It allows developers to

specify gas limits and call values, and access contract storage. The module includes caching

strategies to optimize repeated state access and features for safe execution during re-entrant

calls. By managing these aspects, the call module enables Rust-based contracts to interact

with Ethereum contracts, facilitating contract communication and data exchange.

deploy
The deploy module facilitates the deployment of contracts on the Arbitrum network. It

includes functionalities for both standard and raw deployments, offering flexibility and control

over the deployment process. The raw.rs file provides lower-level deployment functions,

allowing for more granular control and potentially unsafe operations. This module supports

setting deployment parameters, handling the deployment process, and ensuring correct

contract initialization.

Stylus Rust SDK Audit − Core Modules − 10

storage
The storage module provides a comprehensive framework for managing smart contract

storage, featuring abstractions for common data structures like arrays, bytes, maps, and

vectors. It supports both basic and complex storage operations through a set of defined traits,

ensuring proper data handling and access. The module allows developers to define custom

storage logic by implementing the StorageType trait, enabling more advanced data

manipulation while providing persistent storage access in the Rust-based contracts. Stylus

contracts run on a virtual machine that shares the same EVM State Trie, allowing access to

Ethereum's key-value storage. The module provides types and traits for safe storage access

using Rust's borrow checker, preventing unsafe aliasing of storage.

hostio
The hostio module facilitates interactions between Rust-based smart contracts and the host

environment on the Arbitrum blockchain. It provides a set of functions for managing contract

state, executing calls, and handling I/O operations via a foreign-function interface to the Stylus

WASM VM which ultimately communicates with the core blockchain. The wrap_hostio

macro is a key component of this module, designed to simplify and streamline the process of

defining host functions. It wraps low-level host operations in Rust-safe abstractions,

automatically generating bindings to interact with the blockchain. Several single-file modules in

the Stylus SDK provide typical blockchain interactions extensively using the wrap_hostio

module, such as:

block : Provides access to Ethereum block information, including properties like the

block number, timestamp, and miner details. It serves as an interface for retrieving data

about the current or past blocks on the blockchain.

contract : Facilitates interactions with other contracts, enabling function calls and

access to contract metadata. It allows contracts to perform operations such as balance

checks and contract code retrieval.

crypto : Offers cryptographic functions and utilities, such as hashing algorithms and

signature verification.

evm : Interfaces with the EVM, managing execution resources and logging. It includes

utilities to query remaining gas and ink (Stylus-specific compute units), emit logs both in

raw and alloy-typed forms, and manage memory growth.

msg : Handles message-passing operations, providing information about the current

transaction, such as the sender, value, and gas. It allows contracts to interact with

transaction data and control flow.

•

•

•

•

•

Stylus Rust SDK Audit − Core Modules − 11

tx : Provides transaction-related functionality, including accessing transaction details

like gas price and origin. It enables contracts to work with transaction-specific data and

execute transaction-based logic.

Mini Allocator
This allocator is key to the Stylus ecosystem, optimized for wasm32 targets like Arbitrum

Stylus. It uses a minimal bump allocator strategy, prioritizing simplicity and efficiency. Notably,

mini-alloc never deallocates memory, which is ideal for scenarios with tight binary size

constraints where it is acceptable to leak all allocations. This design choice enhances

performance, aligning with Stylus' focus on optimizing for blockchain environments where

traditional memory management can add unnecessary overhead.

Examples
The Arbitrum Stylus SDK repository contains three example crates of common smart contract

designs: erc20 , erc721 , and single_call .

erc20 : Demonstrates an ERC-20 token contract with functionalities like minting,

transferring, and checking balances. It includes methods for token transfers and

managing allowances.

erc721 : Illustrates an ERC-721 NFT contract implementation, covering minting,

transferring, and querying ownership of unique tokens. It also handles token metadata

and ensures compatibility with the ERC-721 standard.

single_cal : Showcases a simple contract for making a single call to another contract,

demonstrating inter-contract communication within the Arbitrum environment using the

Stylus SDK.

Trust Assumptions
SDK Integrity: It is assumed that the Stylus SDK itself is free from malicious code, such

as backdoors or other vulnerabilities that could circumvent the behavior of the underlying

•

•

•

•

•

Stylus Rust SDK Audit − Mini Allocator − 12

blockchain. The SDK is expected to function as described in its documentation, ensuring

that developers can rely on its behavior as intended.

WASM VM and Stylus Module Compliance: It is assumed that the WASM VM and

Stylus module strictly follow the consensus rules as outlined by the core EVM part of

Arbitrum. This ensures that the execution within the Stylus environment is consistent with

the broader consensus rules governing the Arbitrum network, maintaining the integrity

and reliability of smart contract execution.

Third-Party Dependencies: Any third-party libraries or dependencies integrated with the

Stylus SDK are trusted to be secure and regularly updated to mitigate known

vulnerabilities.

Smart Contract Interfaces: It is assumed that the ABIs generated by the Stylus SDK for

contracts are correct and that smart contracts behave in an expected manner, similar to

Solidity contracts. This means that from an external perspective, the contracts should

exhibit predictable and standard behavior, ensuring compatibility and reliability for the

users interacting with them.

•

•

•

Stylus Rust SDK Audit − Trust Assumptions − 13

Critical Severity

C-01 Storage Layout is Inconsistent with Solidity
The documentation asserts that struct fields in Stylus will map to the same storage slots as in

EVM programming languages and that the layout will be identical to Solidity’s. This suggests

that upgrading from Solidity to Rust should not cause misalignment in storage slots, thereby

implying an easy transfer of type definitions.

However, Stylus does not handle inherited storage in the same manner as Solidity. For

example, consider the following Solidity code:

contract Parent {
bool a = true;
bool b = true;

}
contract Child is Parent {

bool c = true;
bool d = true;

}

In this case, storage slot 0 contains 0x01010101 . In contrast, the equivalent Stylus code

uses a borrow clause that uses a new storage slot and does not pack the state variables,

which results in a different storage layout:

// Snippet of parent.rs
sol_storage! {

pub struct Parent {
bool a;
bool b;

}
}

// Snippet of lib.rs
sol_storage! {

#[entrypoint]
struct Child {

#[borrow]
Parent parent;
bool c;
bool d;

}
}

#[external]

Stylus Rust SDK Audit − Critical Severity − 14

https://docs.arbitrum.io/stylus/reference/rust-sdk-guide#sol_storage
https://docs.soliditylang.org/en/latest/internals/layout_in_storage.html

#[inherit(Parent)]
impl Child {
// ...
}

Given the same value set, this results in 0x0101 being in slot 0 and 0x0101 being in slot 1.

This discrepancy is critical for projects using proxy patterns that are migrating from Solidity to

Stylus as it could lead to storage layout misalignment, potentially overwriting state variables.

Consider refactoring the solidity_storage macro to mirror Solidity's behavior.

Alternatively, consider updating the documentation to accurately reflect the current behavior

and avoid misleading developers.

Update: Resolved at commits a99d8c5 and 6e3a62e. Inline documentation has been added to

highlight the discrepancy with Solidity storage layout.

C-02 Lack of Selector Collision Check in External
Macro
One of the functions of the external macro is to automate the exposure of Rust functions within

a Stylus smart contract as Ethereum-compatible methods. To achieve this, it analyzes an

implementation block, processes each method to generate its selectors, and then uses these

selectors to route incoming calls to the appropriate Rust functions.

However, the macro does not validate the uniqueness of these selectors. This oversight can

lead to selector collisions, resulting in methods becoming unreachable. In addition, developers

can manually set a custom selector for a function using #[selector(id =

<NUMBER_THAT_GENERATES_THE_COLLISION>)] , potentially duplicating existing selectors

intentionally or unintentionally. This vulnerability can be exploited to create malicious contracts,

such as honeypots, wherein methods are intentionally made unreachable.

Consider implementing a validation mechanism within this macro to ensure that all selectors

are unique, preventing selector collisions and enhancing contract reliability and security. One

approach could be to add a #[deny(unreachable_patterns)] statement on the route

function to prevent unreachable methods.

Update: Partially resolved at commits a78decd and 0d50c1d. The suggested solution of using

#[deny(unreachable_patterns)] is insufficient, as it only checks for unreachable

patterns within the specific match statement where it is applied. It does not account for

selector collisions with functions from inherited contracts, allowing these conflicts to go

Stylus Rust SDK Audit − Critical Severity − 15

https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/storage/mod.rs#L12
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/storage/mod.rs#L12
https://github.com/OffchainLabs/stylus-sdk-rs/commit/a99d8c5abed54dfdba8e91c9cc9c5c024dd76495
https://github.com/OffchainLabs/arbitrum-docs/commit/6e3a62ea291c3e9e47ef3c1d4f3e5a065ad7f997
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L274
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L274
https://github.com/OffchainLabs/stylus-sdk-rs/commit/a78decd745e2580f57de5cc38bec093842e51e92
https://github.com/OffchainLabs/stylus-sdk-rs/commit/0d50c1daf06ff2175d8a58dd4ec91799defb890b

undetected. Offchain Labs has added inline documentation to highlight this potential issue, and

warnings will also be included on the documentation website. The Offchain Labs team is

exploring alternative approaches to implementing inheritance for Stylus.

High Severity

H-01 Potential Misuse of sol_interface Macro
The sol_interface macro allows developers to seamlessly call Solidity contracts from

Stylus smart contracts using their native interfaces. However, this macro can be easily

manipulated to mislead users about the actual state mutability of functions. For example, a

malicious user could capitalize the first letter of the view or pure keywords, use

homoglyphs, or employ other tricks to deceive users into believing that a function is non-

mutating even though the macro treats that function as state-changing. This fallback to treating

the function as state-changing occurs if no valid mutability keyword is detected, thereby

opening the doors to unintentional errors and hard-to-detect scams.

To mitigate this issue, consider implementing stricter validation within the macro to ensure that

only the correct mutability keywords are permitted. This will help prevent both intentional

misuse and accidental errors, enhancing the overall security and reliability of the macro.

Update: Resolved at commit a474666.

H-02 Custom Selectors Could Facilitate Proxy
Selector Clashing Attack
Stylus allows developers to modify the selector for a given function using the selector

attribute, which can accept either a string name or a u32 ID . This feature facilitates

changing the name of a function while maintaining the same selector, simulating Solidity

overloading capabilities and enabling the creation of language-agnostic contract standards.

However, providing an ID may result in a function selector that exists in both an

implementation contract and its proxy contract. Thus, a user may call a proxy contract function

with a selector matching the intended implementation contract function instead, causing

unintended code execution and precluding the user from accessing the functionality of the

implementation contract. This scenario can occur if an ID integer is defined in such a way

Stylus Rust SDK Audit − High Severity − 16

https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L13
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L13
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L70
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L70
https://github.com/OffchainLabs/stylus-sdk-rs/commit/a4746667bb62023019a37647bff907d297063514
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L58
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L58
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L57
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L57

that, when converted to hex, it matches the function selector in the other contract, whether it is

the implementation or the proxy.

This vulnerability enables malicious projects to create hard-to-detect backdoors. In contrast to

Stylus, Solidity requires finding function signatures with matching selectors before exploiting

this vulnerability, which is not trivial. Even if such function signatures are found, they are likely

to raise red flags due to nonsensical names in the codebase. In Stylus, this attack is harder to

execute when the name option is used instead of ID which makes such scams easier to

detect.

Custom selectors can also confuse third-party monitoring or indexing services that use

function selectors to identify specific functions. These services may rely on standard selectors,

which are part of the standards or belong to community databases such as the 4byte directory.

If contracts use custom selectors, these services may fail to recognize and monitor

transactions, leading to errors.

Given these risks, reconsider the ID option and consider accepting only the name instead. If

the benefits of custom selectors do not outweigh the risks, consider removing them entirely.

Update: Resolved at commit 795d376.

Medium Severity

M-01 Function Overriding Does Not Enforce
Mutability Rules
In Stylus, when an inheriting contract overrides a base function in its parent, there are no

checks to enforce any mutability rules. For example:

A function that does not modify the state in the parent (e.g., a view function) can be

overridden by one that does so in the child.

A function marked payable in the parent can be overridden by a non-payable function

in the child, causing the child function to revert upon receiving ETH.

From a developer standpoint, this can lead to unexpected behavior and error-prone contract

development since this does not match the rules enforced in Solidity, which mandate stricter

mutability enforcement. To align with Solidity's mutability rules and avoid unexpected behavior,

•

•

Stylus Rust SDK Audit − Medium Severity − 17

https://www.4byte.directory/
https://github.com/OffchainLabs/stylus-sdk-rs/commit/795d376e2179b079008073d4e19799299a066d57
https://docs.soliditylang.org/en/v0.8.26/contracts.html#function-overriding

consider refactoring the logic in the external macro by implementing checks on the

mutability attributes in parent functions.

Update: Resolved at commit 1984d8a.

M-02 Multiple Interface Definitions in
sol_interface Block Repeat Functions
If two or more interface definitions are present in the same sol_interface! block,

subsequent interfaces will be expanded to include method definitions from the previous ones.

For example:

sol_interface! {
interface IService {

function makePayment(address user) payable returns (string);
function getConstant() pure returns (bytes32);

}
interface ITree {}

}

The expanded Rust interface for ITree will include make_payment and get_constant ,

allowing calls to ITree.make_payment , for example, in the contract logic. This could allow

malicious developers to hide the interface of ITree , including functions from previous

interface definitions that could then be called on subsequent ones. Moreover, if ITree

includes its own legitimate definition of makePayment , the code will fail to compile because

the implementation block will include two function definitions of the same name.

Consider modifying the sol_interface macro by moving the method_impls declaration

inside the first for loop so that it does not retain tokens from the previous methods during

iteration.

Update: Resolved at commit a64c058.

M-03 Contracts Without at Least One Return
Type Fail to Compile With export-abi Feature
The export-abi feature can be used in the Stylus SDK to generate a Solidity ABI for Stylus

contracts using the cargo stylus export-abi command within the contract crate. With

this feature, the return statement is skipped in the [#external] macro so that the fmt_abi

can be added to the returned router implementation. However, if the contract does not

Stylus Rust SDK Audit − Medium Severity − 18

https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L19
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L19
https://github.com/OffchainLabs/stylus-sdk-rs/commit/1984d8ad04322d4f77250905338c3fbd3333191c
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L13
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L13
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L27
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L27
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L29
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L29
https://github.com/OffchainLabs/stylus-sdk-rs/commit/a64c058dd2b30868e50044e780f8daa818430512
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L295
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L345
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L345

contain at least one function with an explicit return type (e.g., U256), the code will fail to

compile due to an error in the type_decls token stream which is expanded in fmt_abi .

This occurs when there are no return types because types is an empty array and

type_decls attempts to loop over [].iter() . Since the compiler cannot infer the

expected type from an empty iterator, attempting to access fields like id on an unknown type

(&_) leads to errors.

Consider including type_decls within the fmt_abi generation process only when at least

one type is available.

Update: Resolved at commit 31995da.

M-04 Unnecessary and Problematic Storage
Types in Stylus
The Stylus language supports storage types such as StorageU1 and StorageI1 , which are

not present in Solidity. These types do not provide any clear benefits within the SDK and fail to

work properly with arrays and vectors. The density function, heavily utilized with arrays and

vectors, triggers a division-by-zero error when interacting with these storage types. In addition,

types like StorageBlockHash and StorageBlockNumber also lack clear utility.

Consider providing detailed explanations of the use cases and relevance of these storage

types. If their benefits cannot be demonstrated, it is advisable to remove them to avoid

confusion and potential interoperability errors.

Update: Resolved at commit 3f511fa.

M-05 Inefficient Storage of Strings and Bytes
Stylus allows for the use of both strings and dynamically-sized bytes in contract storage.

However, the current implementation is notably inefficient for such types. Specifically, the

functions for setting (e.g., extend) and retrieving (e.g., get_bytes) strings or dynamic bytes

operate byte-by-byte, which results in a high number of SLOAD and SSTORE operations. This

inefficiency is especially noticeable with longer strings or byte arrays, leading to significantly

increased gas costs.

Consider refactoring storage operations for strings and dynamic bytes to optimize gas usage.

Possible approaches include pre-allocating storage space when appropriate; writing data in

full, 32-byte words where possible; and minimizing the number of storage operations.

Stylus Rust SDK Audit − Medium Severity − 19

https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L308-L315
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L308-L315
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L355
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L355
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L355
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L355
https://github.com/OffchainLabs/stylus-sdk-rs/commit/31995daf5eb4cb5fc7d053447c2a1f800938dab7
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/mod.rs#L115
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/mod.rs#L115
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/mod.rs#L115
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/mod.rs#L588
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/mod.rs#L588
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/mod.rs#L514
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/mod.rs#L514
https://github.com/OffchainLabs/stylus-sdk-rs/commit/3f511fae9cedc5581150f3b0187ab23f6fc21a0d
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/bytes.rs#L248
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/bytes.rs#L248
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/bytes.rs#L198
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/bytes.rs#L198

Update: Acknowledged, not resolved. The Offchain Labs team stated:

Work is ongoing for this issue but needs some additional testing.

M-06 Verification Challenges in Contracts May
Facilitate Scams
The Stylus SDK allows developers to create smart contracts for Arbitrum chains using the Rust

programming language which is then compiled to WASM and deployed alongside Solidity

contracts. However, the final WASM output is influenced by several factors, including the Rust

version, enabled features, dependencies, and more. These variations make the build process

nearly non-deterministic across different operating systems and architectures. This non-

determinism complicates contract verification, which is crucial for establishing trust and

reliability in the contract. Without consistent build outputs, it becomes challenging to ensure

that the deployed WASM accurately reflects the intended contract's code. A malicious actor

could exploit this by altering the SDK to compile WASM files that do not function as expected,

even if the smart contract code appears to be secure.

Consider standardizing the build process by specifying and enforcing clear guidelines and

issuing notifications to developers early in the development cycle (instead of doing it post-

deployment). This will streamline contract verification and enhance user trust in the contract's

integrity.

Update: Resolved at commit be51b58. The fix has been made on the cargo-stylus

repository.

M-07 Insufficient Test Coverage
The workspace currently contains only a limited number of unit tests for the abi module and

the mini-alloc crate. The remainder of the codebase lacks unit tests entirely along with any

integration tests. This limited test coverage may lead to undetected issues and hinder the

verification of code functionality across various modules.

Consider adding a robust test suite that includes comprehensive unit and integration tests for

all modules. This will help ensure proper interaction between different parts of the system.

Update: Acknowledged, not resolved. The Offchain Labs team stated:

Stylus Rust SDK Audit − Medium Severity − 20

https://github.com/OffchainLabs/cargo-stylus/commit/be51b58b5ec182906d21fc7c17be64e0848add62
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/abi/mod.rs
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/abi/mod.rs
https://github.com/OffchainLabs/stylus-sdk-rs/tree/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/mini-alloc
https://github.com/OffchainLabs/stylus-sdk-rs/tree/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/mini-alloc

We are currently working on adding a full suite of unit tests for the SDK as well as other

items outlined in issue #148.

M-08 Missing receive and fallback Functions
The absence of receive and fallback functions in Stylus, a language designed to be

interoperable with Solidity, can have several significant implications. In Solidity, the receive

function handles direct transfers of ETH to a contract. Without this function, contracts cannot

accept plain ETH transfers, thereby limiting ETH transfers to those including data which

triggers a specific function call. For example, contracts like PaymentSplitter will only work

for externally owned accounts (EOAs) due to the lack of a receive function. In addition,

many proxy patterns rely on the fallback function to forward calls to another contract.

Without a fallback function, implementing upgradable contracts or beacon proxy patterns

becomes much more complex, requiring alternative mechanisms to delegate calls to other

contracts.

Consider implementing receive and fallback functions to ensure full compatibility with

Solidity contracts. Doing this will help increase code flexibility and support different proxy

patterns.

Update: Acknowledged, not resolved. The Offchain Labs team stated:

Implementation underway. Needs further testing. Progress can be tracked on issue

#150.

M-09 Solidity Interfaces in Stylus Might Mislead
Users into Thinking They Match Solidity’s
Features
The sol_interface macro in Stylus smart contracts allows developers to nearly copy and

paste Solidity interfaces for seamless contract interactions. However, the current

implementation has some potential pitfalls. While it permits elements such as interface

inheritance, events, and errors within the interfaces, these are silently ignored, with only the

functions being processed. This behavior can lead to confusion and errors, as the contract

compiles without issue despite these unsupported elements.

To address this issue, consider documenting the sol_interface macro's current limitations

to set appropriate user expectations and implementing checks to revert when unsupported

Stylus Rust SDK Audit − Medium Severity − 21

https://github.com/OffchainLabs/stylus-sdk-rs/issues/148
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.9.6/contracts/finance/PaymentSplitter.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.9.6/contracts/finance/PaymentSplitter.sol
https://github.com/OffchainLabs/stylus-sdk-rs/issues/150
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L13
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L13

syntax is detected. If feasible, consider including these additional features in future updates as

it could enhance the overall code functionality.

Update: Resolved at commits 821b7f6 and be6306c.

M-10 Potential Misuse of Purity Attributes
In Stylus, contract methods can be marked with attributes such as #[view] , #[write] ,

and #[pure] to explicitly define how they interact with the contract state. However, there are

two ways malicious users can mislead users or third-party services regarding these attributes:

Malicious users can use colons in the attribute names, like #[::pure] ,

#[stylus::view] , or any other name with colons, to bypass the checks enforced by

the external macro. This allows them to misrepresent the function’s intention.

Functions that do not modify the state, such as #[pure] and #[view] methods, can

be incorrectly marked with the #[write] attribute without even requiring colons. The

inline documentation of the macro contains this information, but it should be fixed.

To prevent these issues, consider adding proper validations to the external macro to

enforce correct usage of these attributes.

Update: Resolved at commit d44d94f. The Offchain Labs team removed the mutability

specifiers (except #[payable]), as they can be inferred from the &self / &mut self or the

absence of self . This change simplifies the code by leveraging Rust's syntax. Since methods

using &self or those without self can still modify the state of other contracts—or even their

own state if reentrancy is enabled—through external calls, the team has thoroughly

documented this behavior in the codebase to inform users.

Low Severity

L-01 Unclear Documentation Concerning Call
There are several instances in the documentation and code comments that are unclear or

contradictory with respect to the difference between Call::new and Call:new_in . For

example, Call::new is given as a simple example to show how to configure gas and value.

However, new is only available with the reentrant flag enabled. The reasoning behind this is

•

•

Stylus Rust SDK Audit − Low Severity − 22

https://github.com/OffchainLabs/stylus-sdk-rs/commit/821b7f68147b4b3621be6dba846dd6928c3b432d
https://github.com/OffchainLabs/stylus-sdk-rs/commit/be6306c6587f24869606beabbeec5fd40fa97b90
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L36
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/lib.rs#L419-L421
https://github.com/OffchainLabs/stylus-sdk-rs/commit/d44d94f069631e6d01a36989fa2aa59f04886cd5
https://docs.arbitrum.io/stylus/reference/rust-sdk-guide#configuring-gas-and-value-with-call
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/call/context.rs#L164-L205

unclear since this comment says that new_in should be used for re-entrant calls. Other

confusing comments in the documentation include:

Note too that Call::new_in should be used instead of Call::new since the former

provides access to storage. Code that previously compiled with reentrancy disabled

may require modification in order to type-check. This is done to ensure storage

changes are persisted and that the storage cache is properly managed before calls.

Consider clearly documenting the difference between Call::new and Call::new_in , and

what storage access patterns they represent, and modify code comments accordingly.

Update: Resolved at commit ba3472f.

L-02 Unclear Usage and Documentation For
Storage Context During Calls
To set up a calling context with Call::new_in , the storage argument must implement

TopLevelStorage . The usual pattern to create this implementation is to use the

entrypoint macro, but this is not always desired if there are multiple contracts within a

crate. Without TopLevelStorage , &self and &mut self are no longer available, and

cumbersome workarounds are required, such as adding an empty implementation for

TopLevelStorage . For example:

unsafe impl TopLevelStorage for Contract {}

Furthermore, it is unclear what the purpose of the storage argument is when using

Call::new_in since the call function never actually uses this attribute of the call context.

Consider updating the code comments and documentation to clearly describe the purpose of

the storage argument. In addition, consider alternative implementations of the

Call::new_in function to accommodate contracts that do not implement the

TopLevelStorage trait.

Update: Resolved at commit ba3472f.

Stylus Rust SDK Audit − Low Severity − 23

https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/call/context.rs#L22
https://docs.rs/stylus-sdk/latest/stylus_sdk/call/struct.Call.html#method.new_in
https://docs.rs/stylus-sdk/latest/stylus_sdk/call/struct.Call.html#method.new
https://github.com/OffchainLabs/stylus-sdk-rs/commit/ba3472f498eb797d67c5fac25eaa816704b0da5b
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/call/context.rs#L60
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/call/context.rs#L60
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/call/mod.rs#L84
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/call/mod.rs#L84
https://github.com/OffchainLabs/stylus-sdk-rs/commit/ba3472f498eb797d67c5fac25eaa816704b0da5b

L-03 Misleading Documentation
Throughout the codebase, multiple instances of inaccurate or misleading documentation were

identified:

The inline documentation for the set function in StorageBlockNumber is identical to

that of the get method, causing confusion about their distinct functionalities.

The documentation for the raw_log function advises users to prefer the alloy-typed

raw_log , but it should actually recommend using the log function instead.

Consider correcting the documentation to align with the code's behavior. This will help improve

the clarity and readability of the codebase.

Update: Resolved at commit dc1e9c5.

L-04 Information Leakage in WASM Build
The WASM output of a Stylus contract includes sensitive metadata, such as the username of

the individual who compiled the contract and partial paths from the home directory. Although

this information does not pose a direct security risk, it can be leveraged by attackers for social

engineering or other targeted attacks.

Consider removing or obfuscating such information from production builds to maintain privacy

and reduce the potential attack surface. Stripping metadata from the WASM output can help

mitigate these risks without impacting the functionality of the deployed contract.

Update: Resolved at commit 00abf34. The fix has been made on the cargo-stylus

repository.

L-05 Inefficient Allocator Fallback in Stylus
Contracts
In Stylus contracts, the mini-alloc allocator module from the SDK is intended to be the

standard allocator due to its performance. This module is included in every example and

default template provided by the SDK, ensuring that developers are guided towards using the

most efficient option. However, the declaration of the global allocator, which specifies the use

of mini-alloc , can be removed inadvertently. If this happens, the contract defaults to using

the allocator from the standard library, which is significantly less efficient. Consequently,

contracts deployed using this allocator will be very gas-inefficient.

•

•

Stylus Rust SDK Audit − Low Severity − 24

https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/mod.rs#L526
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/mod.rs#L526
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/mod.rs#L521
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/mod.rs#L521
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/evm.rs#L27
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/evm.rs#L27
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/evm.rs#L39
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/evm.rs#L39
https://github.com/OffchainLabs/stylus-sdk-rs/commit/dc1e9c5cfa758e495e062515cd52d18867188b9e
https://github.com/OffchainLabs/cargo-stylus/pull/81/commits/00abf34d5e1767b275aa66482b26f766a8c7ed85
https://github.com/OffchainLabs/stylus-sdk-rs/tree/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/mini-alloc
https://github.com/OffchainLabs/stylus-sdk-rs/tree/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/mini-alloc

Consider enforcing mini-alloc as the default allocator across all Stylus contracts. Changes

to the allocator should only be permitted through a deliberate and evident action to avoid

unintentional fallback to the less-efficient standard library allocator.

Update: Resolved at commit 2354799.

L-06 Macro Implementations Missing Proper
Docstrings
In the stylus-proc folder, the files that hold the implementations for each macro are

missing proper docstrings.

Given the complexity and length of the code, consider adding detailed docstrings. This will

make it easier for readers and developers to better understand the inner workings of the

codebase while improving the overall code maintainability as well.

Update: Acknowledged, not resolved. The Offchain Labs team stated:

We are looking to refactor our procedural macro implementations to make them more

easily testable and easier to understand. This will include better internal documentation

of their implementations. Progress may be tracked on issue #151

L-07 Misleading Methods in RawDeploy
The limit_revert_data and skip_revert_data methods set the offset and size

fields of the RawDeploy instance. However, these fields are never used in the deploy

function, rendering these methods redundant. This issue is significant because it misleads

developers into believing that they can control the amount of revert data returned, whereas, in

reality, these methods have no impact on the deployment's outcome.

Consider removing these methods and fields or modifying the deploy function to utilize these

fields.

Update: Resolved at commit 6e21166.

Stylus Rust SDK Audit − Low Severity − 25

https://github.com/OffchainLabs/stylus-sdk-rs/commit/235479905d5c1b3dbc1fe3cd807be70ae39795dc
https://github.com/OffchainLabs/stylus-sdk-rs/issues/151
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/deploy/raw.rs#L52
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/deploy/raw.rs#L52
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/deploy/raw.rs#L60
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/deploy/raw.rs#L60
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/deploy/raw.rs#L92
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/deploy/raw.rs#L92
https://github.com/OffchainLabs/stylus-sdk-rs/commit/6e211663f3caf121f7c4c101476fc74128c5f61d

L-08 Potential Misuse of #[borrow] Attribute in
Storage Fields
The #[borrow] attribute is used on storage fields to implement the Borrow and

BorrowMut traits for specific types, facilitating inheritance in Stylus contracts. However, its

application can extend to state variables that do not represent the storage of the parent

contract, leading to issues.

The primary concern is the incorrect semantic meaning when #[borrow] is used on simple

types. This attribute is designed for complex types that represent a subset of the contract's

storage, not for individual storage slots. Such usage misrepresents the attribute's purpose,

misleading developers about the storage layout or contract composition. Furthermore, it

generates additional trait implementations that are unnecessary for simple storage types,

causing unnecessary code bloat and potentially increasing the contract size without any

benefit.

Consider allowing the use of the #[borrow] attribute exclusively for fields that genuinely

represent a subset of a contract's storage. This ensures accurate semantic representation

while avoiding misleading code and unnecessary trait implementations.

Update: Acknowledged, not resolved. The Offchain Labs team stated:

Work is ongoing on this issue, and we are searching for a solution that works in Rust.

Progress may be tracked on issue #149

L-09 Deprecate constant State Mutability in
sol_interface Macro
The sol_interface macro currently allows users to define Solidity interfaces with methods

marked as constant for state mutability. However, starting from Solidity version 0.5.0, the

constant keyword for functions is no longer supported and has been replaced by view and

pure . While the macro internally converts functions with the constant keyword to pure ,

retaining the constant keyword can be misleading.

To align with the later Solidity versions and avoid incorrect mutability assumptions, consider

updating the sol_interface macro to disallow the use of the constant keyword for

function state mutability. This change will help ensure compatibility with modern Solidity

versions and enhance code correctness.

Update: Resolved at commit e173182.

Stylus Rust SDK Audit − Low Severity − 26

https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/storage/mod.rs#L30-L55
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/storage/mod.rs#L30-L55
https://github.com/OffchainLabs/stylus-sdk-rs/issues/149
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L59
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L59
https://docs.soliditylang.org/en/latest/050-breaking-changes.html#syntax
https://github.com/OffchainLabs/stylus-sdk-rs/commit/e173182762799ecdb713bc0308bc8f358f7bbe05

L-10 sol_interface Improper Handling of
Function Visibility
In Solidity, it is mandatory to specify the visibility of a function within an interface, and it should

always be external . The sol_interface macro in Stylus, which processes these Solidity

interfaces, currently allows users to include methods with incorrect visibility attributes, such as

public , or omit the visibility attribute altogether. This non-compliance with Solidity standards

could lead to confusion among developers.

Consider adding validation to ensure that the external keyword is present in function

definitions. This would align with Solidity's interface requirements and prevent potential

misunderstanding.

Update: Resolved at commit 2330ac7.

L-11 sol_interface Lacks Support for Struct
and Enum Types
The sol_interface macro is designed to enable developers to seamlessly call Solidity

contracts from Stylus smart contracts using their native interfaces. However, it currently does

not support struct and enum types, which are commonly used in Solidity. This limitation forces

developers to use less readable workarounds, potentially leading to accidental errors and

reduced code maintainability.

Consider implementing support for structs and enums. This would significantly enhance

developer experience and ensure full compatibility with Solidity interfaces.

Update: Acknowledged, not resolved. The Offchain Labs team stated:

Work has begun on struct support in sol_interface! . More testing is required for

release, and enums should be implemented as well. Progress may be tracked on issue

#74.

L-12 sol_storage! Macro Does Not Support
Private State Variables
Private state variables help enforce encapsulation by restricting direct access, ensuring that

variables are only modified through controlled functions. This approach minimizes the attack

surface and prevents unintended side effects or inconsistencies.

Stylus Rust SDK Audit − Low Severity − 27

https://docs.soliditylang.org/en/v0.8.26/contracts.html#interfaces
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L13
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L13
https://github.com/OffchainLabs/stylus-sdk-rs/commit/2330ac73d84088f84c608fea7fbec142010a3478
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L13
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/calls/mod.rs#L13
https://github.com/OffchainLabs/stylus-sdk-rs/issues/74

Currently, when using the sol_storage! macro, state variables cannot be set as private,

allowing child contracts to access and modify these variables directly. Developers must instead

use the #[solidity_storage] macro, which supports private state variables.

To maintain consistency with #[solidity_storage] , consider enhancing the

sol_storage! macro to support private state variables. Alternatively, this limitation should

be clearly documented in the official documentation.

Update: Acknowledged, not resolved. The Offchain Labs team stated:

We will consider private state variables for the sol_storage! macro as part of the

work for N-04, tracked by issue #147.

Notes & Additional
Information

N-01 Naming Issues
Throughout the codebase, multiple instances of elements that could be renamed to better

reflect their purpose were identified:

The topics parameter in the emit_log function should be renamed to

number_topics to better reflect the nature of the value it represents.

The #[external] macro, which allows methods to be callable by other methods

within the contract or external accounts, should be renamed to #[public] . The

current name might be confused with Solidity's external visibility, which implies that

the function cannot be called from within the contract.

The #[solidity_storage] macro should be renamed to

#[persistent_storage] , #[storage] , or #[state] . Instead, the wrapper

macro currently named sol_storage should adopt the name solidity_storage ,

as it relates more to Solidity's syntax.

The types module name suggests the existence of multiple types. However, if only

Address is defined, the module should be renamed to AddressType . Alternatively, if

additional common types are expected to be added, consider specifying these to avoid

confusion.

Consider addressing these naming issues to improve the readability of the codebase.

•

•

•

•

Stylus Rust SDK Audit − Notes & Additional Information − 28

https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/storage/mod.rs#L170
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/storage/mod.rs#L170
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/storage/mod.rs#L12
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/storage/mod.rs#L12
https://github.com/OffchainLabs/stylus-sdk-rs/issues/147
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/evm.rs#L21
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/evm.rs#L21
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/lib.rs#L541
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/lib.rs#L541
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/lib.rs#L67
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/lib.rs#L67
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/lib.rs#L110
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/lib.rs#L110
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/types.rs
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/types.rs

Update: Resolved at commit 8d1699f. The Offchain Labs team decided to keep both the

sol_storage! macro and the types module with the same name. The former aligns with

the sol! macro from alloy, while the latter will include additional types in an upcoming

release.

N-02 wee_alloc Crate is Unmaintained and
Vulnerable
The wee_alloc crate, a minimal allocator for WebAssembly, is no longer actively maintained,

with the last release being over three years ago. Moreover, two of its maintainers have

indicated that they do not plan to continue supporting the crate. As a result, several open

issues, including memory leaks, remain unresolved.

Even though the crate is not currently used for wasm32 targets, consider switching to a more

actively maintained and safer alternative such as lol_alloc or the default Rust standard

allocator.

Update: Resolved at commit 80bfcba.

N-03 Unstable License URL Reference
The license URL comment at the top of nearly every file in the scope points to a specific

branch (stylus) in the GitHub repository. This branch is not the main branch and may

change or be deleted in the future. If the branch name changes or the license is relocated, the

current URL references will become invalid, leading to broken links.

Consider updating the license URL to point to a more stable reference, such as a specific

commit or tag. Alternatively, consider including a note that the branch name may change.

These measures will help ensure that the URL remains functional over time.

Update: Resolved at commit 0a0ace1.

N-04 Limited Functionality in sol_storage
Macro
The sol_storage macro currently allows users to define state variables in a Solidity-like

syntax within their smart contracts. However, it does not fully replicate Solidity's syntax,

notably lacking support for specifying visibility, as well as defining constants and immutables.

Stylus Rust SDK Audit − Notes & Additional Information − 29

https://github.com/OffchainLabs/stylus-sdk-rs/commit/8d1699fa66aa879446852a827388a10f788b5321
https://github.com/alloy-rs
https://github.com/rustwasm/wee_alloc/issues/106
https://crates.io/crates/lol_alloc
https://crates.io/crates/lol_alloc
https://github.com/OffchainLabs/stylus-sdk-rs/commit/80bfcba978b5633d21bf0eb263b818097047973b
https://github.com/OffchainLabs/stylus-sdk-rs/commit/0a0ace1c2f1a6fe372b54f43bd61fd3d79e69352
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/storage/mod.rs#L170
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/storage/mod.rs#L170

This limitation prevents things like the automatic generation of getters using the public

keyword and makes it difficult to define constants and immutables as seamlessly as in Solidity.

Consider extending the functionality of the sol_storage macro to support these features.

Utilizing the syn_solidity crate could facilitate this enhancement by providing a more

comprehensive parsing and handling of Solidity-like syntax.

Update: Acknowledged, not resolved. The Offchain Labs team stated:

We are considering these additional features for the sol_storage! macro. Progress

can be tracked in issue #147.

N-05 Lack of Length Accessor for Fixed-Size
Arrays
In Solidity, both fixed-size and dynamic arrays support the .length property, allowing

developers to easily determine the size of an array. However, in Stylus, there is no built-in

method to access the length of fixed-size arrays. This functionality is available only for dynamic

arrays (referred to as vectors in Stylus). This absence of a length accessor for fixed-size arrays

may lead to inconsistencies and additional complexity in array management.

Consider implementing a built-in method to access the length of fixed-size arrays in Stylus,

similar to the .length property in Solidity. This enhancement would simplify array handling

and reduce the risk of errors.

Update: Resolved at commit 8ab7650.

N-06 Unresolved Link to EagerStorage
The link to super::EagerStorage in traits.rs is broken as no item named

EagerStorage exists in the storage module.

Consider updating or removing the broken link to ensure accurate documentation and avoid

confusion for developers.

Update: Resolved at commit 9b221c8.

Stylus Rust SDK Audit − Notes & Additional Information − 30

https://github.com/OffchainLabs/stylus-sdk-rs/issues/147
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/array.rs
https://github.com/OffchainLabs/stylus-sdk-rs/commit/8ab76505ccb996e22443b42b45b61526598bac62
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/traits.rs#L179
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/storage/traits.rs#L179
https://github.com/OffchainLabs/stylus-sdk-rs/commit/9b221c88fa077f49c08ca657a420c917330a71e4

N-07 Typographical Errors
Throughout the codebase, multiple instances of typographical errors were identified:

inheritence should be inheritance .

occured should be occurred .

Consider fixing the aforementioned typographical errors in order to improve the readability of

the codebase.

Update: Resolved at commit 5052d30.

N-08 External Macro Attribute Handling
Inconsistency
The external macro currently accepts attributes that are not utilized in its implementation. This

can lead to confusion, especially in comparison to the entrypoint macro which throws an error

if it receives any attributes.

To ensure consistency and reduce potential confusion, consider adding validation to the

external macro implementation to reject any attributes.

Update: Resolved at commit a1267bf.

N-09 Outdated Copyright Year
Outdated copyright years may not reflect recent modifications or ongoing development.

Several files within the codebase have outdated copyright years, including the license file.

Other examples include:

tx.rs

lib.rs

block.rs

Consider updating all outdated copyrights to signal active maintenance and attention to detail.

Update: Resolved at commit d57458d.

•

•

•

•

•

Stylus Rust SDK Audit − Notes & Additional Information − 31

https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L260
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L260
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/hostio.rs#L75
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/hostio.rs#L75
https://github.com/OffchainLabs/stylus-sdk-rs/commit/5052d308f98525a32b06319b1f47f4ab296ef6f1
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L19
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/entrypoint.rs#L13-L15
https://github.com/OffchainLabs/stylus-sdk-rs/commit/a1267bfe56bbe7953728047082491fb4582d41c8
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/licenses/COPYRIGHT.md
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/tx.rs#L1
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/tx.rs#L1
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/lib.rs#L1
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/lib.rs#L1
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/block.rs#L1
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-sdk/src/block.rs#L1
https://github.com/OffchainLabs/stylus-sdk-rs/commit/d57458d237d1558d6205fa864a50c4bb88b14ebd

N-10 Todo Comments in the Code
During development, having well-described TODO comments will make the process of tracking

and solving them easier. Without this information, these comments might age and important

information for the security of the system might be forgotten by the time it is released to

production. These comments should be tracked in the project's issue backlog and resolved

before the system is deployed.

Throughout the codebase, multiple instances of TODO comments were identified:

Line 31 and Line 270 of external.rs

Line 279 of proc.rs

Consider removing all instances of TODO comments and instead tracking them in the issues

backlog. Alternatively, consider linking each inline TODO comment to the corresponding issues

backlog entry.

Update: Resolved at commit 73dbc1c.

•

•

Stylus Rust SDK Audit − Notes & Additional Information − 32

https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L31
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/methods/external.rs#L270
https://github.com/OffchainLabs/stylus-sdk-rs/blob/62bd8318c7f3ab5be954cbc264f85bf2ba3f4b06/stylus-proc/src/storage/proc.rs#L279
https://github.com/OffchainLabs/stylus-sdk-rs/commit/73dbc1ca1d86becaca76236689e7488de98b512f

Conclusion
The Stylus SDK allows smart contract developers to build applications for the Arbitrum

ecosystem using the Rust language. These Stylus programs are compiled to WebAssembly

(WASM) and can be deployed on-chain to run alongside Solidity smart contracts. This

innovative approach aims to combine the efficiency of WASM execution with the robustness of

programming in Rust, all the while maintaining compatibility with the Ethereum Virtual Machine.

During the security audit of the Stylus SDK, we discovered numerous security issues and also

made extensive recommendations for the improvement of the overall design. The project is

clearly still under development, having several features that are either non-functional or contain

bugs. However, the development team showed a strong commitment to addressing these

concerns and we encourage them to continue their efforts. Once all the identified issues are

resolved, further improvements are made, and the project reaches a more mature stage, we

strongly recommend the team to consider conducting a follow-up audit to ensure

comprehensive security.

Despite the current challenges, we see great potential in the Stylus SDK. We look forward to

seeing how the project evolves, particularly as the team addresses the identified issues and

continues to refine the SDK. We believe that further development of the Stylus SDK could

introduce exciting new possibilities to the Arbitrum ecosystem and the broader world of smart

contract development.

Stylus Rust SDK Audit − Conclusion − 33

	Stylus Rust SDK Audit
	Table of Contents
	Summary
	Scope
	System Overview
	Stylus SDK for Rust

	Procedural Macros
	entrypoint
	external
	sol_interface
	solidity_storage
	sol_storage
	derive_solidity_error
	derive_erase

	Core Modules
	abi
	call
	deploy
	storage
	hostio

	Mini Allocator
	Examples
	Trust Assumptions
	Critical Severity
	Storage Layout is Inconsistent with Solidity
	Lack of Selector Collision Check in External Macro

	High Severity
	Potential Misuse of sol_interface Macro
	Custom Selectors Could Facilitate Proxy Selector Clashing Attack

	Medium Severity
	Function Overriding Does Not Enforce Mutability Rules
	Multiple Interface Definitions in sol_interface Block Repeat Functions
	Contracts Without at Least One Return Type Fail to Compile With export-abi Feature
	Unnecessary and Problematic Storage Types in Stylus
	Inefficient Storage of Strings and Bytes
	Verification Challenges in Contracts May Facilitate Scams
	Insufficient Test Coverage
	Missing receive and fallback Functions
	Solidity Interfaces in Stylus Might Mislead Users into Thinking They Match Solidity’s Features
	Potential Misuse of Purity Attributes

	Low Severity
	Unclear Documentation Concerning Call
	Unclear Usage and Documentation For Storage Context During Calls
	Misleading Documentation
	Information Leakage in WASM Build
	Inefficient Allocator Fallback in Stylus Contracts
	Macro Implementations Missing Proper Docstrings
	Misleading Methods in RawDeploy
	Potential Misuse of #[borrow] Attribute in Storage Fields
	Deprecate constant State Mutability in sol_interface Macro
	sol_interface Improper Handling of Function Visibility
	sol_interface Lacks Support for Struct and Enum Types
	sol_storage! Macro Does Not Support Private State Variables

	Notes & Additional Information
	Naming Issues
	wee_alloc Crate is Unmaintained and Vulnerable
	Unstable License URL Reference
	Limited Functionality in sol_storage Macro
	Lack of Length Accessor for Fixed-Size Arrays
	Unresolved Link to EagerStorage
	Typographical Errors
	External Macro Attribute Handling Inconsistency
	Outdated Copyright Year
	Todo Comments in the Code

	Conclusion

